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Abstract— This paper presents a new feedforward controller
based on a continuous-time finite impulse response filter,
designed to minimize the vibrations that usually affect robot
manipulators with elastic joints. In particular, Variable Stiffness
Joints (VSJ) robots are considered, since they are usually
characterized by a very low level of damping which makes
the problem of the oscillations quite important. The proposed
approach allows to simplify the overall control structure of VSJ
robots, which is based on a decentralized control of each servo-
motor, imposing the desired position and the desired stiffness
at each joint, and on a novel feedforward control, filtering the
reference signals. After analyzing some of the filter properties
and the method for the parameters choice, experimental results
on a VSJ robot demonstrate the importance of the proposed
filtering action for minimizing vibrations and oscillation s.

I. I NTRODUCTION

In the last two decades, the development of service robots
close cooperating with humans has driven the designers
towards novel mechanical solutions aiming at increasing the
mechanical compliance and reducing the apparent inertia
of robot manipulators [1]. Unfortunately, an high level of
mechanical compliance deteriorates the performance of the
plant, in particular with respect to precision. For this reason,
in order to solve simultaneously safety and performance
issues, Variable Stiffness Actuators (VSAs), which introduce
a mechanical compliance in the joint actuation that can be
altered via control action, have been proposed [2], [3], [4],
[5]. However, the performance of Variable Stiffness Joints
(VSJ) robots are still far from those of standard rigid joints
manipulators, because of the high order nonlinear dynamics
of the system, due to the additional stiffness variation mech-
anism, and the strongly nonlinear characteristics of VSAs.
Moreover, a major problem of VSAs is the very low intrinsic
damping that usually characterizes this type of devices,
which may cause vibrations and undesired oscillations, [6].
Accordingly, injecting damping into the system is one of the
main control goal in this field. Several control approaches
for VSJ robots are presented in the literature. While many
controllers are conceived for single-joint systems (see [7], [6]
among many others), the multi-joint case is treated less fre-
quently. A feedback linearization algorithm is designed and
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validated in simulations in [8]. A state feedback controller
aiming at obtaining the desired level of damping is presented
in [9], while, more recently, in [10] a backstepping approach
has been proposed to manage the complexity of a VSA
system. The same goal, that is dominating the complexity of
VSJ robots, is the focus of this work. In this case a multi-dof
VSJ robots is built by using variable stiffness servo-motors,
QBMove - Maker Pro VSAs by QBRobotics [11]. These
actuators are provided with their own control system that
allows to achieve a desired position and a desired stiffness
of the output shaft with prescribed performance but can not
be changed by the user. At most an outer control loop can be
built over this basic position/stiffness control. In this paper
the use of a feedforward control is preferred for a twofold
reason:

• the goal of the control is to cancel the oscillations
that affect point-to-point motions of the robot joints,
connected to the motors by the (variable stiffness)
elastic transmissions with low damping, while static
performances, in terms of precision, are not addressed;

• the proposed open-loop control does not alter the stiff-
ness seen at the link side, while a closed-loop control
does [6].

In order to achieve these results, a dynamic filter recently
proposed in [12], has been considered. Note that, in the lit-
erature a number of feedforward controller has been applied
to robotic system with elastic elements. In [13], [14], [15]a
command shaping technique has been used for robots with
flexible links in order to reduce vibrations. The same goal
has been achieved for robot manipulators with elastic joints
in [16], where an input shaping techniques is combined with
an iterative learning mechanism that updates the parameter
of a Zero Vibration (ZV) input shaper in order to take into
account nonlinear and time-varying characteristics of the
plant.
In this paper, after an introduction about the proposed
feedforward control for vibration reduction applied to a
single joint with elastic transmission, which is a linear
time invariant SISO system, a generalization of this method
to MIMO systems is given in Sec. III. Then in Sec. IV
from the general nonlinear model of a VSJ manipulator the
linear approximation of the model for configurations near a
nominal operating point is deduced and the parameters of
the feedforward control are obtained. Experimental results
are reported in Sec. V, while final conclusions are discussed
in Sec. VI.
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Fig. 1. Structure of a robotic joint with elastic transmission.
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Fig. 2. Response of the systemGml(s) with ωn = 260.43 rad/s and
δ = 0.083 (the same numerical values used in [12] are considered) to a
reference step signalqref (t) (a) compared to the response caused by the
step filtered byFexp(s) (b).

II. FEEDFORWARD CONTROL OF AN ELASTIC JOINT FOR

VIBRATIONS SUPPRESSION

The control of a single robotic joint with elastic transmis-
sion, like the one depicted in Fig. 1, can be easily performed
by considering only variables at the motor side. It is well
known, see e.g. [17], that, in absence of gravity, a PD control
based on motor’s positionqm and velocityq̇m is stable for
any positive value of the proportional and derivative gains.
Therefore, it is possible to obtain a controlled system thatin
principle is arbitrarily fast and precise. Unfortunately,even
if the motor is able to track the desired reference signal
qref (t) with small errors (and therefore it is possible to
assumeqm(t) ≈ qref (t)) the link position may be affected by
undesired oscillations and vibrations. As a matter of fact,the
relationship between the motor position and the link position
can be modelled as a second order system, i.e.

Gml(s) =
Ql(s)

Qm(s)
=

2δωns+ ω2

n

s2 + 2δωns+ ω2
n

with ωn =

√

kt
Jl

, δ =
bt

2
√
ktJl

, whereQm(s) = L{qm(t)}
and Ql(s) = L{ql(t)} are the Laplace transforms of the
motor and load position. ParametersJl, bt andkt are respec-
tively the link’s inertia, the damping and the stiffness of the
elastic transmission. The typical response of the system (II)
to a step reference input is shown in Fig. 2(a). A simple and
effective way to reduce the oscillation consists in applying
to the controlled motor a feedforward control action able to
properly filter the given reference signal. In [12] it has been
shown that the filter

Fexp(s) =
α

eαT0 − 1

1− eαT0 e−T0 s

s− α
(1)

guarantees the complete residual vibration1 suppression for
motion systems with elastic transmission described by (II),
fed by step inputs if

α = −δ ωn , Te =
2π

ωn

√
1− δ2

. (2)

1The residual vibration is the oscillation that affects the response at the
end of motion, which in the case of a step input filtered byFexp(s) occurs
after T0 seconds from the application of the step. Note thatFexp(s) has
an impulse response of finite duration, equal toT0.
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Fig. 3. Pole-zero map (a) and sensitivity ofFexp(s) to variations inωn,
with respect to its nominal valuêωn, andδ (b).

This result, shown in Fig. 2(b), can be proved analytically by
considering the step response of the cascadeFexp(s)Gml(s)
(see [12] for more details) but it is quite evident by analyzing
the poles and zeros ofFexp(s) with the conditions (2). As
illustrated in Fig. 3(a),Fexp(s) introduces an infinite number
of zeros located along a vertical line in the complex plane.
In particular, note that the zeros obtained withn = 1 exactly
cancel the poles of the plantGml(s). If the parameters of
the systemGml(s) are not exactly known, the cancellation
will be partial but, in any case, will lead to a reduction of
the residual vibration as illustrated in Fig. 3(b), where the
percent residual vibration2 V% due to errors in the estimation
of the parametersωn andδ is reported. Note thatFexp(s) is
more sensitive to variations of the natural frequencyωn than
to the variation of the damping coefficientδ. In any case, by
closely analyzing the curve of Fig. 3(b), it results that even an
error on the frequency estimation of the20% with respect
to its nominal value produces a reduction of the vibration
of about80% with respect to the unfiltered reference input.
Therefore, although the parameters of the plant are affected
by large uncertainties or are dynamically changing like in
the case of a robot manipulator, the filterFexp(s) leads to a
considerable reduction of the vibrations/oscillations.
The considerations reported above allow to generalize the
proposed result to any type of Single Input Single Output
(SISO) Linear Time-Invariant (LTI) system, characterizedby
one or more oscillating dynamical modes. Therefore, given
a dynamic system modelled as

G(s) =
N(s)

D(s)(s2 + 2δωns+ ω2
n)

(3)

whereN(s) andD(s) are generic polynomial (D(s) Hur-
witz), it is possible to show that the contribution to the
response of the oscillating mode characterized by(δ, ωn) can
be completely nullifiedT0 seconds after the application of
the input signal by inserting between the input and the system
a properly tuned filterFexp(s). Note that the capability of
the filter in cancelling residual vibrations does not depend
on the particular input considered. Therefore, in order to
specify a desired (constant) configuration in lieu of step
functions it is possible to assume a smoother signal, such
as standard second order trajectories. As shown in Fig. 4,T0

seconds after the end of the input trajectoryqm(t), supposed

2According to [18], percent residual vibration is defined as the ratio
between the residual vibration to a step command with and without shaping
filter.
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Fig. 4. Input trajectoryqm(t) and related residual vibrationε(t) =
ql(t) − qm(t) of the resonant system of Fig. 2, when applying a second
order trajectoryqm2(t) (a) and with the same trajectory filtered byFexp(s)
(b).

of durationTtot, residual vibrations on the system output are
completely suppressed. Obviously in this case the amplitude
of residual vibration is considerably reduced with respectto
the application of step signal because of the use of smooth
trajectories.

III. F EEDFORWARD CONTROL OFMIMO LTI SYSTEMS

FOR RESIDUAL VIBRATION SUPPRESSION

The extension of the results described in Sec. II for SISO
systems to Multiple Input Multiple Output (MIMO) systems
is straightforward. As a matter of fact, for MIMO LTI
systems, usually modelled in the state space domain as

{

ẋ = Ax+Bu
y = Cx+Du

(4)

where x ∈ Rn is the state vector,u ∈ Rr is the input
vector,y ∈ Rm is the output vector, and{A, B, C, D} are
matrices of appropriate dimensions, it is possible to deduce
the transfer matrix, i.e. the matrix of the transfer functions
between ther inputs and them outputs,

H(s) =
CAdj(sIn −A)B + |sIn −A|D

|sIn −A|
(5)

whereAdj(X) is the adjoint matrix associated withX and
|X| denotes the determinant ofX. The term|sIn−A| is an
n-th polynomial, whose roots are the poles3 of the transfer
functions that composeH(s). Note that, if no cancellations
occur between the numerator and the denominator of these
transfer functions, they share the same poles. Therefore,
in order to suppress the effects of a poorly damped mode
(δ, ωn) on the outputs, it is necessary to insert a filterFexp(s)
before each of ther inputs.

IV. FEEDFORWARDCONTROL OF ROBOTIC

MANIPULATORS WITH ELASTIC JOINTS

In order to apply the technique proposed in sections II
and III to a robotic system it is necessary to consider the
complete model of the manipulator. The reduced model4 of
a visco-elastic joints robot is

M(ql)q̈l +C(ql, q̇l) q̇l + g(ql)+Kt · (ql − qm)

+Bt · (q̇l − q̇m) = 0 (6)

3As well-known, if no cancellations occur the poles coincidewith the
eigenvalues of matrixA.

4This model is based on the assumption that the angular kinetic energy
of the motors is only due to their own spinning [19].

where M(ql), and C(ql, q̇l) are the inertia and centrifu-
gal/Coriolis forces matrices,g(ql) is the gravity term,Kt =
diag{kti}, Bt = diag{bti} are the matrices of the trans-
mission stiffness and viscous friction,ql andqm denote the
vector of the joint positions at the link side and at the motor
side, respectively [20]. Note that the motors’ dynamics that
usually accompanies (6) has been neglected since, according
to a standard decentralized control of robot manipulators,it
is assumed that the motors behave like ideal position sources
able to impose any desired configurationqm.
The model of VSJ robots can be ideally obtained from (6)
by assuming that the stiffness matrix is not a constant but
a function of time, i.e.Kt = Kt(t). The stiffness modifi-
cation is generally obtained with extra command inputs to
the robot system that allow to change each joint stiffness
independently, i.e.kti = kti(pi) where pi denotes the
activation signal of the stiffness of thei-th joint. Therefore,
it is possible to rewrite the transmission stiffness matrixas
Kt = Kt(p). In many cases, in particular when the variable
stiffness mechanism is obtained with a couple of antagonistic
actuators (like in the experiments proposed in this paper) [8],
the elastic torque not only depends on the external signalp(t)
but it is also a nonlinear function of the motors displacement.
As a consequence, in lieu ofKt(p) ·(ql−qm) the expression
of the elastic transmission torque must be rewritten in a more
general way asτ el = τ el(ql−qm, p) whereτ el(∆q, ·) denotes
a vectorial nonlinear function whose elements are odd strictly
monotonically increasing functions of∆q andτ el(0, ·) = 0.
Finally, it is worth noticing that often the variable stiffness
mechanism makes also the damping torques not constant but
variable as a function of the time. Therefore, a quite general
expression that describes the dynamics of VSJ robots is

M(ql)q̈l +C(ql, q̇l) q̇l + g(ql)+τ el(ql − qm, p)

+τ damp(q̇l − q̇m, p) = 0 (7)

where, similarly to τ el, τ damp(∆q̇, ·) denotes a vectorial
nonlinear function whose elements are odd strictly mono-
tonically increasing functions of∆q̇ and τ damp(0, ·) = 0.

A. Linearized model of a VSJ robot and feedforward design

In order to find the parameters of the proposed filter for
feedforward control for a given valuep = p⋆, it is necessary
to linearize (7) around the desired equilibrium state(ql, q̇l) =
(q⋆l , 0) with q⋆l related to the equilibrium input(qm, q̇m) =
(q⋆m, 0) by

g(q⋆l ) + τ el(q
⋆
l − q⋆m) = 0. (8)

Note that, for the sake of clarity, since the inputp is
supposed to be a constant the dependance ofτ el andτ damp

on it has been omitted. The approximation of (7) by Taylor
series expansion up to the first order provides the following
expression

M(q⋆l )∆q̈l + g(q⋆l ) +
∂g(ql)

∂ql

∣

∣

∣

∣

ql=q⋆
l

∆ql + τ el(q
⋆
l − q

⋆
m)

+
∂τ el(∆q)

∂∆q

∣

∣

∣

∣

∆q=q⋆
l
−q⋆

m

(∆ql −∆qm) +
∂τ damp(∆q̇)

∂∆q̇

∣

∣

∣

∣

∆q̇=0

(∆q̇l −∆q̇m) = 0

(9)



where∆ql = ql − q⋆l , ∆qm = qm − q⋆m, etc. represent small
variations with respect to the corresponding equilibrium val-
ues. Note that centrifugal/Coriolis terms, that are quadratic
with respect to the velocity, disappear in the linearized
model. By substituting (8) in (9) and denoting

G
⋆ =

∂g(ql)

∂ql

∣

∣

∣

∣

ql=q⋆
l

, K
⋆
t =

∂τ el(∆q)

∂∆q

∣

∣

∣

∣

∆q=q⋆
l
−q⋆

m

,

B
⋆
t =

∂τ damp(∆q̇)

∂∆q̇

∣

∣

∣

∣

∆q̇=0

the expression of the linearized model becomes

M(q⋆l )∆q̈l +G
⋆∆ql +K

⋆
t (∆ql −∆qm)+B

⋆
t (∆q̇l −∆q̇m) = 0

(10)
which can be rewritten in the state-space form such as (4)
with

A =

[

0n In

−M−1(q⋆l )K
⋆
t −M−1(q⋆l )G

⋆ −M−1(q⋆l )B
⋆
t

]

B =

[

0n 0n

M−1(q⋆l )K
⋆
t M−1(q⋆l )B

⋆
t

]

where the state and input vectors arex = [∆ql ∆q̇l]
T and

u = [∆qm ∆q̇m]
T respectively. By analyzing the eigenvalues

of the matrixA it is possible to find the values of the resonant
modes that affect the robotic plant. An degrees-of-freedom
robot manipulator with undamped or poorly damped elastic
joints will be characterized byn pairs of complex conjugate
eigenvalues with(δi, ωni), i = 1, . . . , n. In order to suppress
the oscillations at a constant configurationq⋆l it is sufficient
to filter the reference signals of the motors, and consequently
the motor positionsqm(t) supposed to be equal toqref (t),
with a chain of filtersFexpi

(s), one for each mode of the
system.

V. EXPERIMENTAL RESULTS

The method described in previous sections has been tested
on a real soft robotic arm build with QBMove - Maker Pro
VSAs by QBRobotics [11]. These actuators implement the
concept of variable stiffness servo-motors, i.e. motor units
that include also the position/current sensing and the control
system allowing the user to command both the position
and the stiffness of the output shaft with external signals.
For these reason, these actuators are very suitable for rapid
prototyping robotic systems with variable stiffness joints [5].
QBMove VSAs are provided with an easy to use Mat-
lab/Simulink toolbox that can run without particular restric-
tion even on standard operating system and communicate
with the actuators via USB. In the experiments reported in
this section Matlab was running with a fixed step sizeTs = 2
ms. For this reason, the filterFexp(s) has been discretized
according to the techniques reported in [12].
The mechanical structure of these VSAs is based on an
antagonistic configuration with two servo-motors connected
to the output shaft by tendons that are fixed to springs. The
working principle is quite simple: the shaft equilibrium posi-
tion is the mean value of the servos positions and is therefore
affected by the concordant motion of the servo-motors, while
the stiffness grows as the displacement between the servos
increases. Therefore, when the user specifies a give shaft
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Fig. 5. Step responseql(t) of the variable stiffness servo-motor with an
inertial load with different stiffness valuesk⋆t . In red the step set-point of
45 deg is reported.

positionql and a stiffness presetp⋆, these values, related to
the motor position by

ql =
qm,1 + qm,2

2
, p⋆ =

qm,1 − qm,2

2
,

are translated by the QBMove controller in the motor posi-
tions qm,1 and qm,2, which are actuated by the two servo-
motors. As a consequence, a feedforward controller that
filters the inputsql andp⋆ is actually placed before the motor
positionqm,1 andqm,2, as supposed in Sec. IV.

A. Characterization of a single actuator

In order to test the proposed method, an initial experi-
mental analysis on a single actuator has been carried out to
estimate the parametersα andT0 which characterize the filter
Fexp(s). In order to better appreciate the oscillations due to
the elastic transmission, a known inertial load represented
by an iron disk of diameter10cm and weight1kg has been
attached to the actuator shaft. Then a step of45 deg have
been commanded to the actuator with a fixed stiffness preset
value and the response has been evaluated.
Several tests has been performed with different stiffness
values in order to analyze the related step responses. As it
can be seen from the responses of Fig. 5, the system behaves
like a second order system. This means that the dominant
dynamics is the mechanical dynamics of the inertia with the
elastic transmission, while the dynamics of the two servo-
motors inside the VSA can be neglected. For each stiffness
presetp⋆, and therefore for each values of the stiffnessk⋆t ,
the values of the damping coefficientδ and natural frequency
ωn of the system have been determined, and are reported in
Fig. 6. It is worth noticing that, as expected,ωn increases as
the stiffness grows but it is also visible a slight increase of δ,
due to the frictional effects of the mechanical transmission
of the QBMove VSA. SinceJl is known, fromδ andωn it
is possible to immediately deduce the values of the stiffness
and damping(k⋆t , b

⋆
t ) about the equilibrium point.

In a first stage of this experimental activity, the proposed
feedforward control based on the exponential filterFexp(s)
has been applied to a single actuator and its performances
have been compared with those of ZVD Input Shapers, which
are the most widespread filtering methods for residual vibra-
tion suppression, see [21], [22], [23], and which cause the
same time-delay of the proposed filter. In order to appreciate
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the effectiveness of the proposed method, only very low
stiffness values have been considered as they represent a
more challenging situation in terms of vibrations. With the
parameters derived by means of the procedure described
above, the appropriate parameters of the exponential and
ZVD filters have been found for every stiffness preset that
has been considered. Then the filtered step inputs have been
provided to the actuator. The obtained results are shown in
Fig. 7: the performances of the two methods in terms of
residual vibration reduction and motion time duration are
similar and in general very good. However, it is interesting
to notice the difference between the motionsqm,1(t) and
qm,2(t) performed by the two servo-motors: while the mo-
tors with the ZVD input shaper are fed by several steps,
exponential filter provide a smoother trajectory that can be
easily tracked.

B. Application of the feedforward control to a planar robot

The proposed technique has been applied to the 2-dofs pla-
nar robotic arm made of QBmove VSAs shown in Fig. 8(a).
The actuator parameters(k⋆t , b

⋆
t ) derived in previous section

for a given stiffness presetp⋆ have been used to determine
the values(δi, ωni) of the two vibratory modes that char-
acterize the robot model. Since these values depend on the
equilibrium configuration (and in particular onql,2e) but their
variation is rather limited5, the entire range of variation of
ql,2e has been considered for a givenp⋆ and the mid value of
the interval in which the parameters range has been assumed.
In this way, the level of the vibrations is minimized for any
possible robot configuration. In Fig. 8(b), this approach is
illustrated, with respect to the natural frequencies. Fromthese
values the parameters of two exponential filters, which are
arranged in a cascade configuration on the reference inputs
of the motor, are obtained, see Fig. 9. Also in this case
the behavior obtained with the proposed exponential filter

5In the example reported in Fig. 8(b), the variations of the natural
frequencies are less than20%.
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is compared with the one obtained with ZVD Input Shapers.
In the test shown in Fig. 10.I, only the first joint is moved,
according to a step signal of30 deg. Like in the example
of Fig. 8(b), the preset stiffness signal has been set to5.
Despite the nonlinear behavior of the robot, the cascade of
filters, designed for a linear system, is able to cancel the
oscillation on the first joint and also to considerably reduce
the mutual influence with the second joint, see Fig. 10.I(b).
In Fig. 10.II a simultaneous motion of30 deg of both joints is
required. It is quite evident that the proposed method elimi-
nates residual vibrations. Moreover, it guarantees a smoother
motion with respect to the ZVD input shaping technique
with the same time performance. In both experiments it can
be noted a considerable position error due to the fact that
feedforward control is not able to compensate for friction
effects (the gravity does not affect the system which moves
on the horizontal plane but the unbalanced load of the links
produces a bending torque on the joint axes that causes a
considerable increase of static and Coulomb friction with
respect to the case of the disk used as inertia for the single
actuator). Anyway, the fact that even without filters the static
error is comparable proves that this problem is not related
to the specific trajectory generation, but rather to the small
value of the stiffness.
In Fig. 10.III the same experiment of Fig. 10.II but with
an higher value of the stiffness (p⋆ = 30) is shown. The
conclusions do not change with respect to the previous test,
that is the use of exponential filters on the reference inputs
cancels the oscillations on the joints positions. In this case,
the static precision slightly improves, because of the higher
stiffness.

VI. CONCLUSIONS

In this paper, a feedforward control based on a chain of ex-
ponential filters has been proposed for the suppression of the
oscillations that usually affect variable stiffness joints robots.
By means of an experimental activity on a simple robotic
setup built with commercial VSAs, the proposed method
has been proved to be very effective for residual vibration
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Fig. 10. Response of the actuators (ql,1(t) andql,2(t)) that compose the 2-dofs robotic arm to a step input trajectory, with a prescribed stiffness preset
p⋆. In dashed red the actual trajectory is reported. In (a) are reported pure step inputs, in (b) the steps are filtered by means of the exponential filter, in
(c) the step inputs are shaped using ZVD input shaper.

reduction, even if the problem of static precision still remain.
A possible improvement of the proposed technique consists
in combining the feedforward control with a mild feedback
control, that guarantees small static errors without modifying
too much the stiffness seen at the joints side.

REFERENCES

[1] A. Bicchi, S. Rizzini, and G. Tonietti, “Compliant design for intrinsic
safety: general issues and preliminary design,” inIntelligent Robots
and Systems, 2001 IEEE/RSJ Int. Conf. on, vol. 4, 2001, pp. 1864–
1869 vol.4.

[2] J. Choi, S. Park, W. Lee, and S.-C. Kang, “Design of a robotjoint with
variable stiffness,” inRobotics and Automation (ICRA), 2008 IEEE Int.
Conf. on, May 2008, pp. 1760–1765.

[3] S. Wolf and G. Hirzinger, “A new variable stiffness design: Matching
requirements of the next robot generation,” inRobotics and Automa-
tion (ICRA), 2008 IEEE Int. Conf. on, May 2008, pp. 1741–1746.

[4] N. Tsagarakis, I. Sardellitti, and D. Caldwell, “A new variable stiffness
actuator (compact-vsa): Design and modelling,” inIntelligent Robots
and Systems (IROS), 2011 IEEE/RSJ International Conference on,
Sept 2011, pp. 378–383.

[5] M. Catalano, G. Grioli, M. Garabini, F. Bonomo, M. Mancinit,
N. Tsagarakis, and A. Bicchi, “Vsa-cubebot: A modular variable
stiffness platform for multiple degrees of freedom robots,” in Robotics
and Automation (ICRA), 2011 IEEE Int. Conf. on, May 2011, pp.
5090–5095.
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